
RF Systems

Tom Hardek January 10 – 12, 2012

RF Systems – Presentation Outline

- Equipment Status
 - Ion Source RF
 - RFQ
 - MEBT Rebuncher System
 - Warm Linac RF
 - Ring RF
 - Low Level RF
- Reliability Issues
- Klystron Lifetime and Spares
- RF Test Stand
- Superconducting RF Support
- Summary

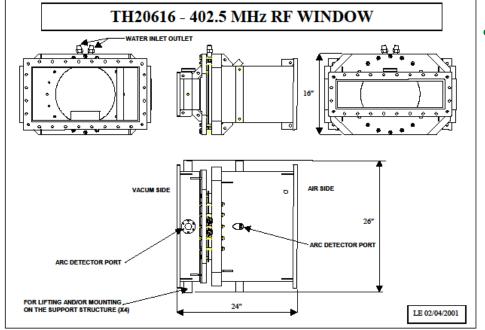
Ion Source RF

- Goal is to develop a Low Level RF control system and operate with a Solid-State power amplifier at ground potential
 - Installed High-Voltage insulated RF transformer
 - Production 2 MHz High Voltage Isolation Transformer has been in operation since July 2010
 - Plan to provide a 13 MHz transformer to allow operation of the 13 MHz amplifier system at ground potential
 - Installed ground-referenced QEI hard-tube amplifier and controls
 - Preparing to install Solid State Amplifiers in Front End
 - Plan to concentrate on developing a closedloop Low Level RF system for lon Source (Not presently funded)

Transmission Line High Voltage Isolation Transformer

RFQ Status

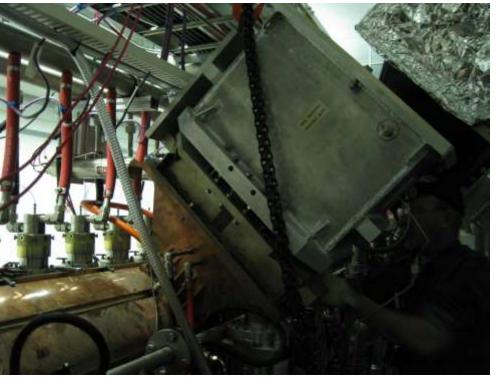
- Retuned RFQ after a major shift in frequency (January 2009)
 - 2nd time we have done this
- Concerned another shift could take place
- May have field errors we do not observe
- Working on obtaining a spare
 - Have contract with RI (Germany)
 - Design Complete
 - Fabricated two short prototype segments to verify mechanical design issues and brazing operation
- Anticipate delivery Fall 2012



Warm Linac Issues

- Have recently developed a vacuum to water channel leak in DTL-4 Tank
 - We traced the leak to an RF vacuum window and believe it is a braze joint failure.
- Replaced 2 DTL windows due to vacuum leaks at waveguide flange braze joint
- Have arcing in the Iris/Window regions of several DTL tanks
- During the July 2010 shutdown we inspected DTL-3 and DTL-4 coupling Irises
 - Did not see signs of arcing on DTL-4
 - Found DTL-3 missing an RF Shield on the vacuum pumping port
 - Installed Shield during January 2011 shutdown
 - Irises have some high field regions we can improve
 - Intend to redesign irises and fabricate replacement for DTL 3 and a couple of spares (Redesign and prototype is funded. Manufacture of replacement units is not currently funded.)
- During February 2011 startup we broke a CCL window
 - Believe this is a thermal failure from Thales past experience
 - Not satisfied with original water cooling path design
 - Will improve design and manufacture new spares locally (Design is funded. Manufacture of windows is not presently funded.)
- Will want to redesign both DTL and CCL Couplers for operation at 1.4 MW
 - Increased beam loading will require higher power through already troublesome couplers

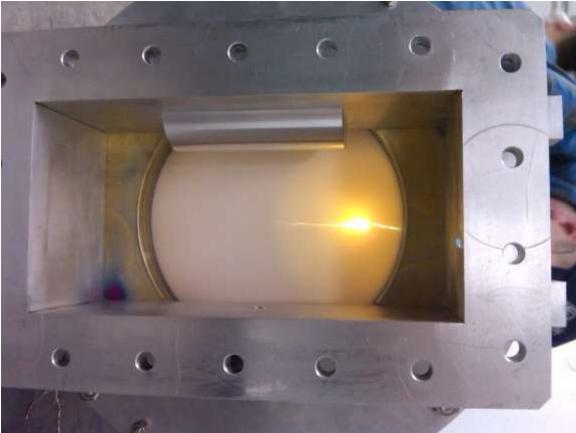
Warm Linac Issues



- Vacuum Leak on DTL-6 RF window (May 2009)
 - Traced to a braze joint in the vacuum side waveguide section
 - May have had similar problem on DTL-4
 - RF conditioned 4 spare windows
 - Two with improved welded waveguide joint
 - Replaced DTL-4 window July 2010
 - Planning to build 3 more spare windows in-house

DTL 3 Iris Pumping Port RF Screen

Screen installed during shutdown period - Jan. 2011



KIDGE Frederik Labouring

CCL 3b Window Failure

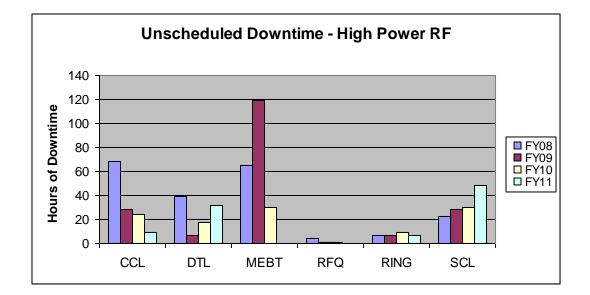
• Replaced with a spare – Feb. 2011

Ring RF

- Replaced QEI driver amplifiers
 - We have had several QEI amplifiers fail
 - Can no longer acquire replacement components
 - Have replaced QEI drivers with Tomco amplifiers identical to the subsystem amplifiers used in the new Ion Source amplifier.
- Had several failed Lambda ALE anode supplies
 - Had a variety of failure causes
 - Working with Lambda to develop in-house repair capability
- Working on improved Low Level RF system
 - Present system lacks some desirable features that may be important for 1.4 MW operation.

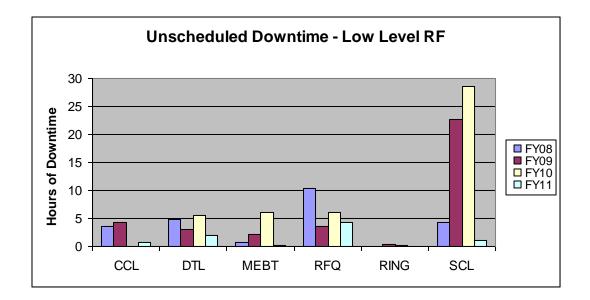
Linac Low Level RF Improvements

- Overall the LLRF systems have been very dependable
- Minor temperature dependence found on LLRF systems
- Developed prototype system to limit temperature dependence
 - Laboratory testing completed
 - Plan to install for Accelerator testing January 2012
- Redesign of Analog Front End & RF Output module complete cost of new units is significantly lower than original unit cost.
- Developed an inexpensive 8 channel pulse power meter for monitoring RF channels and measuring klystron perveance
 - Several units in use but production of remaining units is not yet funded.



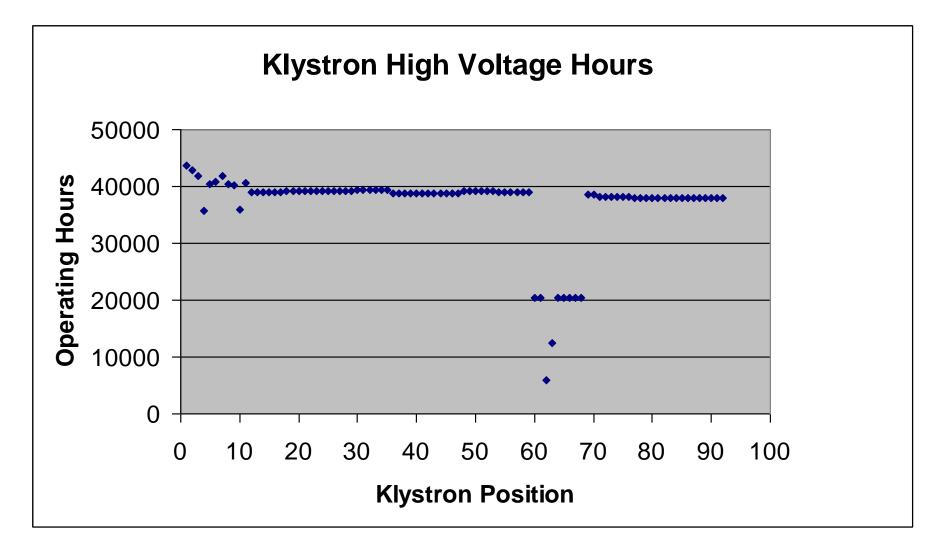
Future Low Level RF Work

- Obsolescence is the major issue for the current LLRF systems
- Redesign of High Power Protection Module underway to mitigate FPGA obsolescence and improve resolution
- Field Control Module (FCM) will need to be addressed in the near future due to FPGA obsolescence
- Ring LLRF systems lack some features that may be required to support 1.4 MW operation
- Need for an Ion Source LLRF system to optimize control
 - Currently operated open loop
 - Not currently funded


Unscheduled Downtime – High Power RF

- MEBT Rebuncher amplifiers were the major cause of downtime but fell off sharply when we replaced the brute force high voltage supplies with capacitor charging supplies.
 - We have now fully implemented Solid State MEBT amplifiers and downtime is essentially zero.
- DTL downtime is increasing Due to window/Iris arcing and vacuum issues
- The jump in SCL downtime in FY11 is the result of transmitter faults. Two transmitters had problems during FY 2011.

Unscheduled Downtime – Low Level RF



SCL had been the major contributing item

- In FY-2011 we shifted these faults to High Power RF
 - We believe they are structure related which fits into High Power RF
 - The majority of downtime is from the LLRF protecting real cavity fault conditions

Klystron Operating Hours

Klystron Anticipated Lifetime

18:33:56	NC HPRF Perveance Values				RF Screens EXI		
RF Structure	Mod V (KV)	Cath I (A)	Perveance	Factory Value	Nominal Power (MW)	Modulator Pulse Length	XMTR Time Pulse Delay
RFQ	0.5	0.00	0.0000e+00	0.780	0.768	1300.0	0.51
DTL 1	н	0.00	0.0000e+00	0.790	0.545		0.48
2	н	0.00	0.0000e+00	0.790	1.532		0.48
3	0.7	0.00	0.0000e+00	0.780	1.791	785.0	0.42
4	н	0.00	0.0000e+00	0.790	1.804		0.42
5	0.4	0.00	0.0000e+00	0.740	1.775	1185.0	0.42
6	н	0.00	0.0000e+00	0.810	1.700		0.42
CCL 1	0.3	0.00	0.0000e+00	1.420	2.805	785.0	0.77
2	0.5	0.00	0.0000e+00	1.400	3.239	785.0	0.77
3	0.7	0.00	0.0000e+00	1.440	3.322	785.0	0.77
4	0.8	0.00	0.0000e+00	1.490	3.412	1185.0	0.77

- Previously recorded perveance data is hard to interpret due to changing modulator pulse length
 - Voltage is recorded as an average value and droops throughout the pulse
 - Current is recorded at selected time into cycle
 - Analyzing existing data
- We have recently recorded waveform data for each klystron
- We are adding a screen to display perveance data and are data-logging the parameters
- Developed multichannel power meter with extra channels to record klystron voltage and current waveforms and calculate perveance
 - Several installed in the klystron gallery
 - Production of more units is not currently funded

15 Managed by UT-Battelle for the U.S. Department cr. ...

Klystron Spares Inventory

- Klystrons
 - DTL uses 2.5 MW, 402.5 MHz klystrons (7 in service, 7 spares)
 - We have 4 spare E2V versions (E2V has stopped building these)
 - Thales has completed the design of a replacement and delivered 3 acceptable klystrons
 - CCL uses Thales 5 MW, 805 MHz klystrons (4 in service, 5 spares)
 - We have 5 spare Thales klystrons with 4 klystrons fully conditioned
 - We have 2 more klystrons on order
 - 1 klystron failed when we got the cathode and filament connections reversed.
 - 1 klystron failed with loss of vacuum while in storage
 - SCL uses 550 kW, 805 MHz (81 in service, 43 spares)
 - We have 11 spare original design CPI klystrons
 - We have 20 spare CPI klystrons capable of 700 kW version (replaced 9 Thales)
 - We have 12 spare Thales klystrons (three have stability issues we can correct)
- Gridded Tubes
 - Ring RF uses 500 kW Tetrodes, TH558/4CM500,000G (4 in service, 4 spares)
 - Ion Source RF uses 20 kW Tetrodes, 4CX20000 (3 in service including test stands, 2 spares)
 - Will replace with solid state amplifiers

RF Test Stand

- Primary test stand for RF components
 - 402.5 & 805 MHz klystrons routinely tested and conditioned
 - Window/coupler conditioning
 - Support for SCL cavity testing
 - High Voltage Converter Modulator (HVCM) testing to support development efforts

Superconducting RF Support

- Developing 4 output mechanical Vector-Modulator
 - Independent phase/amplitude control of each output
 - Will be used to power all 4 cavities within a High B Superconducting Cryomodule simultaneously
 - Developing LLRF controls for vector-modulator
- Providing RF and controls for Vertical Test Stand

Single output Vector Modulator

Wide Range Mechanical Phase Shifters

Summary

- There remains significant Ion Source RF System work
- MEBT RF upgrade complete
- Warm LINAC still has some problems
- SCL RF Power limitation resolved
- We are beginning to acquire Klystron Perveance Data
 - Analyzing archive data
- Continue to identify and resolve reliability issues

